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Abstract

Critical Infrastructure control systems continue to foster predictable communication paths, static 
configurations, and unpatched systems that allow easy access to our nation’s most critical assets. 
This makes them attractive targets for cyber intrusion. We seek to address these attack vectors by 
automatically randomizing network settings, randomizing applications on the end devices 
themselves, and dynamically defending these systems against active attacks. Applying these 
protective measures will convert control systems into moving targets that proactively defend 
themselves against attack. Sandia National Laboratories has led this effort by gathering 
operational and technical requirements from Tennessee Valley Authority (TVA) and performing 
research and development to create a proof-of-concept solution. Our proof-of-concept has been 
tested in a laboratory environment with over 300 nodes. The vision of this project is to enhance 
control system security by converting existing control systems into moving targets and building 
these security measures into future systems while meeting the unique constraints that control 
systems face.
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1.  NETWORK RANDOMIZATION

Critical Infrastructure control systems continue to foster predictable communication paths and 
static configurations that allow easy access to our Nation’s most critical assets. This makes them 
attractive and easy targets for cyber attack. This project addresses these attack vectors by 
automatically reconfiguring network settings and randomizing application communications 
dynamically. Applying these protective measures will convert control systems into moving 
targets that proactively defend themselves against attack.

The network randomization module is responsible for managing network reconfiguration, 
securely communicating reconfiguration specifications to other network nodes, and ensuring that 
connectivity between nodes is uninterrupted. This will help eliminate the class of adversaries 
who rely on known static addresses of critical infrastructure network devices for attack.

1.1 Implementation
The Network Randomization (NR) application is a multi-component module written for the POX 
software-defined-networking (SDN) controller.  POX is an open-source SDN controller, written 
in the Python language.  As such, it can be run on virtually any OS platform that can handle 
Python (Windows, Mac OS and Linux).  At the time of this document’s publication, we have 
primarily used POX in Ubuntu 14.04 LTS with Python version 2.7.6.

At the heart of the NR application are three components: the network randomization algorithm 
and OpenFlow interface (nwr), the random IP generator (gen) and the network mapping database 
module (netmap).  Ancillary modules/code provide for a RESTful API via which an external 
application may trigger a force-randomization action for the network.  The functionality of these 
components is spread out through a number of files, located in the POX directory structure.  
Those files (code and otherwise) required to run the NR application are shown below (note: all 
files contained in ~/pox/ext/, except where indicated).

Python files
nwr.py
gen.py
netmap.py
nwr_json.py
nwr_webservice.py
../pox/web/jsonrpc.py

Other files
network.csv
dpid.db

The remainder of this section includes: (1) high level explanations of the three core components, 
to include necessary input parameters; (2) the RESTful API; and (3) considerations and 
requirements for integration.
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1.1.1. nwr
The nwr component is the main body of the NR application.   Upon initialization, the nwr 
module reads the network specification file network.csv and populates the dpid.db sqlite3 
database.  Thereafter, it creates random IP generator objects for each network under 
randomization.  At this point, the nwr module is then registered with the POX core object.  

After registration, the nwr module listens for POX OpenFlow (OF) events regarding the 
connection of OF compatible switches to the POX core module.  It then creates a Switch object 
for each of the connected switches, and keeps track of those Switch objects in a Python 
dictionary, keyed by the unique datapath-id (dpid) of the OF switch.  When a switch is connected 
to the OF controller, it will only switch packets when said packets match installed flow rules on 
the switch.  If there is not a flow rule that the packet may match against, the packet header is sent 
to the controller where controller logic determines how to treat the packet (controller logic in this 
project is contained in the nwr module).

The Switch class contains the primary nwr algorithm. The algorithm is commenced when a 
packet_in event is generated by the switch; this packet_in event is indicative of the packet not 
matching any flow rules (often called a rule-miss).  The nwr module hosts an address-resolution 
protocol (ARP) server.  So, if the packet is an ARP packet, the controller checks the netmap 
database to see if the requestor and the requested IP are part of the network.  If they are, it 
responds with the appropriate MAC address.  The nwr module also has the ability to pass DHCP 
traffic unscathed, to ensure endpoints are properly addressed (this feature was added due to 
testing conditions in virtual environments, ideally IP addresses would be static on endpoints and 
thus not require DHCP traffic to pass).  After these two conditions have been passed, the 
following algorithm is traversed:  

tIP true IP on the workstation
oIP overlay IP for the overlay IP network
dpid datapath ID ~ an Openflow-enabled Switch
controller Openflow controller for dpid
database sqlite3 network map
database_o ephemeral oIP/MAC mapping

(1) Local SRC to remote DST (received on local port)
if switch receives SRC tIP (implied: no rule match)

Check database to match tIP from correct dpid port
if match

Check if DST tIP valid
if valid

if on different dpid
change SRC tIP->oIP and DST tIP->oIP
output action to egress port (uplink port)
install rule on local switch

idle timeout: n1, hard timeout: n2
install rule on remote switch to change oIP->tIP 

idle timeout: n1, hard timeout: n2+1
send packet

if on same dpid 
if on local switch, output action: send to correct DST port

send packet
if invalid

drop packet
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if no match
drop packet

The algorithm only allows communication (and random IP address assignment) to occur between 
entities that are part of the network as specified, and are directly connected to an OpenFlow-
compatible switch.  Special considerations have been given to devices that may not be able to 
meet the latter requirement – particularly router gateways and/or DHCP servers.   Gateways are 
included in the network map, and are also specified in the nwr code (see below).  When an ARP 
is received from a gateway address for an oIP, the gateway IP and MAC are checked against the 
netmap database.  If validated, then database_o is accessed for the MAC of the oIP and 
subsequently returned to the gateway.  A similar process is employed for DHCP servers.

The specification of these IP addresses, along with several other pertinent properties of the 
network under the NR application, must be entered at the top of the nwr.py file.  Details are 
described below.

arp_queue = deque(maxlen=0) 

The arp_queue is a first-in-last-out (FILO) queue that keeps track of the number of responses to 
an ARP request.  Its purpose is for performance.  Since ARPs are broadcast packets, it is possible 
that many OF-switches may receive identical ARPs for the same address (e.g., as sent by a 
gateway router).  The arp_queue attempts to limit the number of ARP responses already sent for 
a particular ARP request.  However, setting this to 0 length will not impact functionality of the 
module.

FLOOD_DELAY = 5

The FLOOD_DELAY variable is also another performance enhancer.  It simply provides a wait 
period for the newly connected switch before it starts to broadcast traffic.

# Interval to roll/randomize IPs (in seconds)
# Specify as a number or "RANDOM"
# ROLL_INTERVAL = 4
# If RANDOM, specify the interval, e.g. 30 to 60 seconds
ROLL_INTERVAL = RANDOM
ROLL_MIN = 30
ROLL_MAX = 60

The roll interval section prescribes the timeout period for each randomization flow-rule.   Each 
flow rule’s idle timeout is set for infinity.  Thus, this period is used for the hard timeout of a 
flow-rule.  For a fixed time, set the ROLL_INTERVAL to the time in seconds.  To randomize 
the life-time of a flow-rule, the ROLL_INTERVAL may be set to RANDOM.  Then, the interval 
of time to randomize in can be specified in ROLL_MIN and ROLL_MAX.

# Dictionary Networks
# [hash] = network address; [0]=CIDR; [1]=approx devices; [2]=gateway
networks = {
     "192.168.0.0" : [24, 100, "192.168.0.1"],
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     "10.0.0.0"    : [24, 100, "10.0.0.1"]
   }

The Dictionary Networks section describes the subnetworks that will be under IP randomization.  
The data structure is a Python dictionary, where the key (or hash) is the network address.  Each 
hash is linked to a list structure that defines: [0] the classless inter-domain router (CIDR) prefix, 
given as an integer [1] the approximate number of devices in the said subnetwork; and [2] the 
gateway IP address for the subnetwork.  Careful thought should be given to the CIDR and 
number of devices in the network.  Ideally, the number of devices in the network should be not 
more than half the size of the CIDR, and even less if multiple communications between 
endpoints may be expected.  This is due to the assignment of random oIP addresses to the 
endpoints.  Consider two endpoints A and B, each in a subnetwork NA and NB, respectively.  
Random oIPs are assigned for each unidirectional communication flow.  Thus, for A  B, there 
will be an oIP for A from NA, and an oIP for B from NB .  For each bidirectional 
communication between two endpoints, two oIPs will be used from the pool of available oIP 
addresses for each endpoint.  Thus, for example, if every device in a network reports back to a 
server at the same time, and there are n devices, then there must be at least 2n available oIPs to 
assign (if the communications are bidirectional).  

dhcpservers = set()
dhcpservers.add("192.168.255.254")
dhcpservers.add("10.0.0.254")

Finally, if the subnetworks and/or environment require the use of DHCP servers for IP address 
assignment, their addresses should be added to the dhcpservers set as shown above.

1.1.2. gen
The gen component contains the RandomIPGenerator class.  This object is instantiated with the 
following class variables:

dq: deque(maxlength=network_size) 
mac_map{} 

The dq variable is a Python deque data structure whose depth is initialized with the size of 
network (total assignable IPs under the defined CIDR).  Its purpose is to keep track of the used 
oIPs, so as to avoid reassignment or collision of oIPs.  The mac_map consists of elements that 
are keyed by an oIP; each item stores the true MAC of the endpoint.  This is primarily used for 
ARP responses to gateways that may not be part of the subnetworks under randomization.

The following getter functions make up the rest of the class:

def getRandomIP (self, network_address, cidr=0, mac=None)
  def ipGenCIDR(self, cidr_prefix, network_address)

def getOIPMac (self, oIP)

The getRandomIP provides a randomly generated oIP in the respective CIDR.  The supplied 
MAC is then used as an entry for the mac_map dictionary.  The getRandomIP function contains 
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a sub definition for ipGenCIDR.  This is done to allow future randomizer functions (e.g., IPv6).  
The getOIPMac returns the true MAC for the passed in oIP.

1.1.3. netmap
The netmap component provides the necessary interface to the sqlite3 database that stores the 
true network map(s), as contained in the file dpid.db.  The sqlite3 db is flat, consisting of a single 
table with the following fields:

Index Field Type Example
0 host_name string “rtu_1675”
1 host_ip string “172.16.0.100”
2 host_mac string “00:00:00:01:de:cb”
3 dpid string “00-00-00-12-23-34”
4 dpid_port int 1
5 dpid_uplink int 10

All entries are derived from the network.csv file, which is described in more detail in a later 
subsection.  The netmap component itself consists of the NetworkMapperDB class.  The class 
has two class variables: (1) connection (which connects to the sqlite3 database file); and (2) cur 
(a function under the connection object used to query the sqlite3 database).  The remainder of the 
class is comprised of the following functions.

def getSource (self, src_ip, src_dpid, src_port)
def getDest (self, dst_ip)
def getMAC (self, ip)

The getSource function is used by nwr to verify that a packet received from some IP is allowed 
to be within the network(s) under randomization.  Using the source’s IP, and packet information 
detailing the dpid (switch) and port it was received on, a check is done against the data in the 
dpid.db database.   If the IP, dpid and port are validated, the dpid_uplink port is returned to the 
caller (for the crafting of the forwarding action in the nwr flow-rule action).  If the data is 
invalid, None is returned.  The getDest function does a similar test, but on the destination IP 
address for the packet.  If the destination IP address is not in the database, None is returned.  If it 
is, a list containing the destination MAC, dpid, dpid_port and dpid_uplink is returned.  The final 
def, getMAC, is primarily used by nwr’s ARP server, to retrieve MAC addresses for validated 
source/destination pairs.  The function returns None for unfound MAC addresses.

1.1.4. RESTful API
The NR application provides a RESTful API via which a JSON formated request may be passed 
to the application.  This request is used solely by an external application to force re-
randomization of the network address space.  This optional service is hosted as a webservice on 
port 8000 of the NR host machine.   An example using the curl application is shown below.

curl -i -X POST -d \
'{"method":"force_randomization","params":{"dpid":"'$DPID'"}}' \
http://127.0.0.1:8000/OF/

http://127.0.0.1:8000/OF/
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curl -i -X POST -d '{"method":"force_randomization"}' \
http://127.0.0.1:8000/OF/

The first example depicts sending a randomization request for a specific switch, whose dpid 
should be specified in the $DPID variable in the following format: “XX-XX-XX-XX-XX” 
(where X is a hexadecimal value).  The second example depicts the command to force 
randomization for all registered switches in the network(s) under randomization.  For both 
commands, the correct IP address for the POX host machine should replace the 127.0.0.1 
address.

If integrating into a Python file, code can be written like the example below.

import httplib
import json
POX_IP = "127.0.0.1" #IP address of the POX controller
DATA = {"method":"force_randomization"}
# To forcing just one dpid 
# DPID = "00-00-00-12-34-56"
# DATA = {
#    "method":"force_randomization",
#    "params":{
#        "dpip":DPID
#        }
#    }

class ForceRandomization (object):
  def __init__(self, server):
    self.server = server
  def post(self, data):
    ret = self.get_data(data, 'POST')
    return json.loads(ret[2])
  def get_data (self, data, action):
    print "Sending force randomization command."
    path = "/OF/"
    headers = {
        "Content-type":"application/json",
        "Accept":"application/json",
         }
    body = json.dumps(data) #convert dict to json string
    conn = httplib.HTTPConnection(self.server, 8000)
    conn.request(action, path, body, headers)
    response = conn.getresponse()
    ret = (response.status, response.reason, response.read())
    conn.close()
    return ret
The RESTful API is implemented in the following files: nwr_json.py, nwr_webservice.py, and 
../pox/web/jsonrpc.py.

1.1.5. Requirements

1.1.5.1. OpenFlow Compatibility
The linchpin to the NR system is the necessity of OpenFlow compatible switches.  In our 
experiments and testing, we have integrated Open vSwitches (OVS) into each of our Linux-

http://127.0.0.1:8000/OF/


15

based endpoints.   However, if this is not possible or feasible, endpoints may be located behind 
OpenFlow compatible switch(es), so long as they have a channel back to the OpenFlow 
controller.

For an Open vSwitch implementation, the following configuration commands may be used:

BRIDGE = the named OVS bridge on the endpoint
IP = the IP address of the POX controller host machine

ovs-vsctl set-controller $BRIDGE tcp:$IP:6633
ovs-vsctl set controller $BRIDGE connection_mode=out_of_band 
ovs-vsctl list controller

Physical OpenFlow compatible switches should undergo the same type of configuration, based 
on switch specification(s).

1.1.5.2. Network Map
The NR application requires a network map that maps to the format described in the netmap 
section above.  To reiterate:

Index Field Type Example
0 host_name string “rtu_1675”
1 host_ip string “172.16.0.100”
2 host_mac string “00:00:00:01:de:cb”
3 dpid string “00-00-00-12-23-34”
4 dpid_port int 1
5 dpid_uplink int 10

These data should be included for each device (endpoint) on the network, collected in a comma 
separated values (csv) file named network.csv.  This file should be placed in the ~/pox/ext/ 
directory before nwr initialization.  As an example, the lines of the file should resemble 
something like:

gw_192,192.168.0.1,08:00:27:ab:92:54,00-00-00-00-00-00,0,0
gw_172,172.16.0.1,08:00:27:94:a7:71, 00-00-00-00-00-00,0,0
gw_10,10.0.0.1,08:00:27:0f:7f:52, 00-00-00-00-00-00,0,0
serverA_192,192.168.0.201,08:00:27:15:bd:18,08-00-27-15-bd-18,65534,1
serverB_192,192.168.0.202,08:00:27:ef:5c:22,08-00-27-ef-5c-22,65534,1
serverA_172,172.16.0.201,08:00:27:b0:03:9e,08-00-27-b0-03-9e,65534,1
serverB_172,172.16.0.202,08:00:27:e0:c6:0b,08-00-27-e0-c6-0b,65534,1
serverA_010,10.0.0.201,08:00:27:cc:9c:d8,08-00-27-cc-9c-d8,65534,1
serverB_010,10.0.0.202,08:00:27:d8:7b:6f,08-00-27-d8-7b-6f,65534,1

For those devices that are not under randomization but must be in the network for ARP purposes 
(e.g., router gateways), the dpid, dpid_port and dpid_uplink may be defined as 00-00-00-00-00-
00,0,0 respectively.  When one or more devices are behind a single dpid (switch), it is OK to 
have a one-to-many relationship for switch to endpoints.
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1.1.5.3. Infrastructure
The current implementation of the NR system requires complete separation of the data network 
(e.g., the operational network) and the OF management network.  As such, each device that 
provides a dpid must have at least two interfaces, one for the OF management network to 
connect to the POX controller machine, and any remaining interfaces for the data network.  In 
our experiments and testing, our endpoints had Open vSwitches installed on them; one physical 
interface on the endpoint was reserved for the OF network, the other connected to the data 
network, through the Open vSwitch.

For example configuration, the result of an OVS show command (sudo ovs-vsctl show) might 
display the following:
Bridge “br0”
     Controller “tcp:10.0.0.100:6633”
     Port “eth0”
          Interface “eth0”
     Port “br0”
          Interface “br0”
               type: internal

And if using an OS like Ubuntu, an example /etc/network/interfaces file may be written as:
auto eth0
iface eth0 inet static

address 0.0.0.0  # A promiscuous interface

auto eth1 
iface inet static

address 10.0.1.111  # OpenFlow out-of-band IP
netmask 255.255.255.0

auto br0
iface br0 inet static

address 192.168.0.11  # Operational IP
netmask 255.255.255.0 # Operational netmask
gateway 192.168.0.1  # Operational gateway

With such a configuration, the bridge’s br0 interface will host the IP address for the operational 
network, and will automatically assume the MAC address of the physical eth0 interface (as 
added to the bridge br0).  This simplifies not only the MAC addresses, but also the dpid – as the 
dpid of br0 will also be the MAC of eth0/br0.  The eth1 interface is addressed for the out-of-band 
OF management network, and will connect to the POX controller (and the nwr module) upon 
initialization.   Thus, as traffic passes through the network to the endpoint address (10.0.0.111 in 
this example), or originates from the endpoint, it will pass through the OF controlled OVS on the 
endpoint.  This action will trigger a packet_in event for the nwr module, thereby starting the 
randomization algorithm.
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If this is not possible for an endpoint, then locating that endpoint behind an OpenFlow 
compatible switch will suffice, again, as long that switch has an out-of-band channel back to the 
POX host machine.
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2.  APPLICATION RANDOMIZATION

Automatically discriminating between legitimate code and mobile malicious code running on a 
system is a difficult problem. It generally requires visibility into the internal state of the 
compromised application, and detailed knowledge of the application's normal behavior. This 
comes at a hefty price in terms of performance, and is still unreliable as a way to detect 
compromise.

The approach we took with application randomization is slightly different – we are attempting to 
shift the burden of work onto the malicious code rather than onto the defending system. One of 
the things that differentiates malicious code from legitimate is its perception of the environment 
in which it runs. Legitimate code is linked against libraries with defined symbols, and the 
locations of the symbols are filled in as needed to ensure that the program runs correctly.

Additionally, many conventions are in place between the application and its supporting libraries 
that enable correct communication; things like calling conventions, data structure layouts, and 
numerous other points of consistency that are implied in the protocol that connects application 
and library.

Malicious code, on the other hand, typically lands in a hostile environment and must bootstrap 
itself without support from the system. To do this, it is essential that the system have predictable, 
usable properties so that the malicious code can find the resources it needs and put them to use. 
If we could break that predictability, the malicious code would have an extremely difficult job 
ahead of it to spread beyond a single, tailor-made infection. That is the goal we are pursuing with 
application randomization.

Significant work has been done in this area, with good results. Address Space Layout 
Randomization (ASLR) loads chunks of memory at randomized offsets, making it more difficult 
to locate library functions and other important data. Instruction set randomization (ISR) changes 
the instruction set itself so that code written to execute on one machine will not work on another. 
Combined, these approaches provide some protection from malicious code infections, but they 
are not complete. ASLR can be defeated by a brute-force approach, because the size of the 
dislocated memory chunks is large enough that it's possible just to try a few thousand times and 
find what you're looking for. Randomized instruction sets are difficult to implement on today's 
hardware, and they can be defeated by return-to-libc attacks, and more generally by return-
oriented-programming. In both of those cases, the attack uses the existing code on the system 
instead of executing its own code by carefully crafting a sequence of return addresses and stack 
arguments.

2.1 Looking to the Compiler for Help
ASLR and ISR are both instances of a more general scheme, which is to make the environment 
in which malicious code operates unpredictable and ultimately unusable. We can take that 
concept much farther if we can alter the way software is compiled and distributed. The concept 
of application randomization in a nutshell is to find every decision point in a compiler that could 
be made differently without harming function, and deliberately randomize it. Opportunities for 
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randomization of this kind include function locations, instruction selection, register allocation, 
choice of internal calling conventions, code block ordering, switch case ordering, stack layout, 
internal data structure layout, and a variety of other implementation details that could be 
equivalently done in different ways. 

By specifying a key that is unique to a given machine, and by altering the compiler to make 
pseudorandom decisions based on that key in the above places, we can reach deep into the 
structure of the resulting binary and create programs that are functionally equivalent across 
machines, but are so structurally different from each other that it's effectively impossible to 
navigate them without the map provided by the legitimate install process.

By distributing code in a partially-compiled intermediate language format, we can additionally 
make the installation process fast and painless as well as support the distribution of non-open-
source code. In this scheme, the software is distributed as an intermediate bitcode representation 
which can be quickly randomized and transformed into machine code at the time of installation. 

2.2 Implementation
Our prototype implementation of this concept uses the Low Level Virtual Machine (LLVM) 
compiler infrastructure to support this process. Programs are compiled into LLVM bitcode, 
which is a binary representation that serves as the intermediate representation for the 
optimization passes that LLVM provides for generating quality machine code. Our 
randomization transformation is implemented as an optimization pass in LLVM, which is run by 
the standard clang compiler tool chain when compiling C-code. The prototype implements 
function location randomization, which means that it globally randomizes the order in which 
functions appear within the resulting binary. When used in a library like the standard C library, 
this creates a significant obstacle for a malicious program that's attempting to use a method like 
return-to-libc or return-oriented-programming to bypass other security features.

The randomizing version of the compiler can be dropped in to an existing build system, as long 
as the clang compiler tool chain is supported. A helper script included with the randomizing 
compiler serves to make the process transparent by wrapping the standard tool chain with the 
workflow necessary to compile and link a randomized executable.

2.2.1 Randomizing Compilation Process
The typical compilation process for a large C-language application follows this basic order:
1) Individual C files are compiled to object files
2) Any assembly language files are compiled to object files
3) The set of object files so generated are linked into an executable or library

In order to support randomization, this basic process is altered to include an intermediate step 
through LLVM bitcode:
1) Individual C files are compiled to LLVM bitcode files
2) Assembly language files are compiled to object files (as before)
3) LLVM bitcode files are linked to create one large LLVM bitcode file. If the code was to be 
distributed, this file and the assembly objects would be the distribution package.  
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4) The randomizing optimization pass is run on the large LLVM bitcode file.
5) The LLVM bitcode file is compiled to an object file
6) The assembly object files and the large randomized object file are linked to create the 
executable or library, as before.

2.2.2 Example Run
The implementation includes the following source code files for the randomizing optimization 
pass.

FunctionSwap - A directory that holds the randomizing optimization pass source
musl-c-library-symbols* - Samples of the symbols dumped from the musl C library after two 
different compilation runs
runclang - A python script that acts as a wrapper for clang and llvm's opt command to make the 
build process mostly transparent.

The LLVM module optimization pass will randomize the order of functions in the module of the 
code runs on. In order to use it, a copy of the FunctionSwap directory is needed into the 
lib/Transforms directory of an LLVM-4 source tree. When it's in place, LLVM can be built with 
'make' and 'make install'.

The optimization pass will be compiled to a shared object file name FuncSwap.so, which will be 
installed to the $PREFIX/lib directory specified for the LLVM installation.

The easiest way to use the code is with the provided wrapper for the clang toolset (runclang). 
runclang manages the build process so that it behaves like a normal two step compilation 
(compile, link). Behind the scenes, it generates bitcode instead of object files, then links the 
bitcode files, randomizes the linked module, and turns it back into object code for normal linking 
as described above. Next, runclang will need to be placed somwhere in accessible by the path 
environment variable, then when an autoconf build is performed of a source package, provide it 
the following values for the configuration settings:

CC=runclang
CCAS=runclang
CCASFLAGS=--asm
CFLAGS=--compile
LDFLAGS=--link

The configure command will then look something like this:
CC=${CC} CCAS=${CCAS} CCASFLAGS=${CCASFLAGS} CFLAGS=${CFLAGS} 
LDFLAGS=${LDFLAGS} ./configure --prefix=$PREFIX --target=x86_64

After that, issuing 'make' and 'make install' as usual and it will work. 

Alternatively, the optimization pass can be run manually if desired. The optimization pass runs 
on an llvm bitcode file. To create one, first compile the source code with clang:

clang -c -emit-llvm -o <filename.bc> <filename.c>
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This will generate the file <filename.bc>, which is an LLVM bitcode file. Now, run llvm's 
optimizer on the bitcode as follows:

opt -load FuncSwap.so -funcswap -o<filename-opt.bc> 
<filename.bc>

This will randomize the function ordering in <filename.bc> and put the resulting file in 
<filename-opt.bc>.

To compile that further, first turn it into an object file with clang:

clang -c -o <filename.o> <filename-opt.bc>

After that, treat it just like any other object file for linking purposes.

One compilation produces the following list of addresses along with the associated functions in 
memory:
00000000000813da T __isgraph_l
00000000000a0912 T __islower_l
000000000008cf1e W __isoc99_fscanf
000000000000f7e7 W __isoc99_fwscanf
0000000000020570 W __isoc99_scanf
000000000000472c W __isoc99_sscanf
0000000000030884 W __isoc99_swscanf
00000000000001f4 W __isoc99_vfscanf
000000000006d01d W __isoc99_vfwscanf

While a separate compilation produces the following locations of functions:
00000000000844f0 T __isgraph_l
0000000000082c0e T __islower_l
0000000000018b4a W __isoc99_fscanf
0000000000015ac7 W __isoc99_fwscanf
000000000002b922 W __isoc99_scanf
0000000000038156 W __isoc99_sscanf
00000000000863f4 W __isoc99_swscanf
0000000000007cf7 W __isoc99_vfscanf
0000000000043b61 W __isoc99_vfwscanf

As seen from above, the two instances compiled yield different binaries.

2.3 Future Work
This prototype established the infrastructure necessary to support randomized compilation and 
distribution, and implemented one of the randomizing transforms. There are many more 
transforms to be implemented, each of which will combine with the others to make transmission 
of malicious code vastly more difficult with little or no cost in terms of performance in the 
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application itself. Future work in this area will be focused on developing more randomizing 
transforms, and on making sure that the resulting code functions well when combined with other 
security features like non-executable stacks, stack canaries, ASLR, and ISR.
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3.  DYNAMIC DEFENSE

Dynamically defending a network against an active attack has many similarities to a chess 
master. Chess masters are amongst the best chess players in the world and often succeed by 
quickly recognizing patterns combined with strategically mastering the opening and middle 
moves of a game. Once a pattern is recognized, the chess master draws from the experience 
gained from many games to deploy appropriate response strategies. The same strategies apply to 
successfully defending critical infrastructure systems. Critical Infrastructure control systems 
often harness unpatched (legacy and modern) systems that allow easy access to our Nation’s 
most critical assets making them attractive and easy targets for cyber attack. On the other hand, 
critical infrastructure systems communicate and execute programs in fairly predictable patterns 
relative to traditional IT based systems lending themselves well to dynamic defense strategies. 
Specifically, the dynamic defense project aims to better secure control systems by recognizing 
and dynamically defending them against active attacks.

3.1 Framework
Currently, it is extremely difficult to detect an attack until it is too late. We have developed a 
machine learning framework that recognizes active attack patterns in near real time. This 
framework, shown in Figure 1, is capable of recognizing known attack vectors and also of 
generalizing knowledge from known attacks to recognize new attacks.   In our implementation, 
we respond to these attacks by transforming our networks and applications into moving targets 
by applying the techniques implemented from the network randomization project. The 
framework itself is dynamic, allowing the specifics of the detection mechanism to change over 
time. Each component in our framework is described in the following sections.
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Figure 1: Our framework developed to classify traffic into anomalous or normal 
categories.

3.1.1 Raw Data
Initially, features are extracted from raw input data.  For our experiments, we employed the 
Kyoto 2006+ dataset, which consists of features extracted from network traffic collected at 
Kyoto University from a regular mail and DNS server and several honeypots between 2006 and 
2009 [1]. The vectors in this dataset consist of 14 features selected from the features in the KDD 
Cup ’99 dataset, plus source and destination port and IP address, detection results from three 
intrusion detection systems, and the start time and duration of the session [2]. We use only the 
first 14 features:  

 duration: length (number of seconds) of the connection  
 service: network service on the destination, e.g., http, telnet, etc.  
 src_bytes: number of data bytes from source to destination  
 dst_bytes: number of data bytes from destination to source  
 count: number of connections to the same host as the current connection in the past two seconds  
 same_srv_rate: % of connections in the count feature to the same service  
 serror_rate: % of connections in the count feature that have ``SYN'' errors  
 srv_serror_rate: % of connections whose service type is the same to that of the current 

connection in the past two seconds that have “SYN” errors
 dst_host_count: among the past 100 connections whose destination IP address is the same to that 

of the current connection, the number of connections whose source IP address is also the same to 
that of the current connection

 dst_host_srv_count: the number of connections in the dst_host_count feature whose service type 
is also the same to that of the current connection

 dst_host_same_src_port_rate: % of connections in the dst_host_count feature whose source port 
is the same to that of the current connection

 dst_host_serror_rate: % of connections in the dst_host_count feature that have “SYN” 
dst_host_srv_serror_rate: % of connections in the dst_host_srv_count feature that “SYN” errors 

 flag: normal or error status of the connection  

since they can be extracted from any system. From these 14 features, we derived several 
additional features. Inclusion of these features improves the performance of the machine learning 
algorithms:

 total_bytes: src_bytes + dst_bytes
 log10(src_bytes)
 log10(dst_bytes)
 src_bytes / duration
 dst_bytes / duration
 total_bytes / duration
 log_duration: log10(duration)
 count / duration
 dst_host_count / duration
 dst_host_srv_count / duration
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 dst_bytes * dst_host_count: 
 dst_bytes * dst_host_srv_count 
 same_srv_rate * srv_serror_rate
 same_srv_rate * dst_host_count
 same_srv_rate * dst_host_srv_count
 srv_serror_rate * dst_host_srv_count
 dst_host_count * dst_host_srv_count

Among these, several other features were extracted but were not used as they only contributed to 
a small performance increase or none at all for the machine learning algorithms. These features 
are as follows:

 unix_time: unix timestamp for the connection
 orig_p: the originating port
 resp_p: response (destination) port
 orig_h: originating host
 resp_h: response (destination) host
 protocol_type: protocol type of the connection: TCP, UDP and ICMP
 flag: connection status. The possible status for this are: SF, S0, S1, S2, S3, OTH, REJ, RST0, 

RSTOS0, SH, RSTRH, SHR
 land: if the source and destination addresses and port numbers are equal then, this variable takes 

the value 1 else 0
 wrong_fragment: sum of bad checksum packets in a connection
 urgent: sum of urgen packets in a connection. Urgent packets are packets with the urgent bit 

activated
 srv_count: sum of connections to the same destination port number
 rerror_rate: % of connections that have activated the flag REJ, among the connections 

aggregated in count
 diff_srv_rate: % of connections that were to different services among the connections aggregated 

in count
 srv_diff_host_rate: % of connections that were to different destination machines among the 

connections aggregated in srv_count
 dst_host_same_srv_rate: % of connections that were to the same service, among the connections 

aggregated in dst_host_count
 dst_host_diff_srv_rate: % of connections that were to different services, among the connections 

aggregated in dst_host_count
 dst_host_srv_diff_host_rate: % of connections that were to different destination machines among 

the connections aggregated in dst_host_srv_count
 dst_host_rerror_rate: % of connections that have activated the flag REJ, among the connections 

aggregated in dst_host_count
 dst_host_srv_error_rate: % of connections that have activated the flag REJ, among the 

connections aggregated in dst_host_srv_count
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Of course, the framework can be used with other types of data. In particular, host based features, 
such as system performance statistics and statistics derived from sequences of system calls, can 
also be used [3].  We represent the service and flag features with a one-hot binary encoding.

This raw data set is used to train our machine learning algorithms for future classification of 
unknown traffic and should be representative of what is observed in normal operations. Although 
we used a readily available dataset for our proof-of-concept implementation, actual traffic of the 
system where the dynamic defense technology will be deployed should be used for training the 
machine learning algorithms.

3.1.2 Bloom Filters
After feature extraction we process the data with a sequence of Bloom filters. Bloom filters are a 
probabilistic method for determining the newness of data. A Bloom filter consist of an array in 
which all values are initialized to zero. When data is received by the BBloom filter, the data is 
first hashed by several hash functions. The hashed values are then used as indices into the 
BBloom filter array. At each index pointed to by a hashed value, the value in the Bloom filter is 
set to  1. With 100% probability old data will have a ‘1’ at each index, while with high 
probability that is adjustable by controlling the parameters of the Bloom filter, the new data will 
have a ‘0’ at one or more indices [5].  

We use Bloom filters for data reduction and to help control the false positive and false negative 
rates. The first Bloom filter separates new data from old so that we only have to analyze new 
data with the machine learning models. Old data is then sent to a Bloom filter containing feature 
vectors from false positives. If the data is found in this filter, then it is labeled as being normal 
data. If the data is not in the false positives Bloom filter, then it is processed by a Bloom filter 
containing feature vectors from attack data. If the data is found in this filter then it is labeled as 
being attack data, otherwise it is labeled as being normal data. The false positive and attack 
Bloom filters are initially populated with known vectors, with the class label removed, from a 
labeled training set. During operation, all feature vectors are added to the initial Bloom filter, and 
any vectors classified as attacks are added to the attack Bloom filter, again with the class labels 
removed. In practice, we envision that, in addition to these automated procedures, an analyst 
could maintain the false positives and attacks Bloom filters. In support of this, our framework 
adds all feature vectors classified as attacks to a database. In practice, the raw data associated 
with these vectors would also need to be stored.

3.1.3 Softmax Scaling
Next, all new data is softmax scaled as a preprocessing step. Softmax scaling is a normalization 
approach that does minimal harm to the information content of the input dataset, Softmax scaling 
compresses all numerical values to the range [0,1].The transformation is linear at the mean but 
has smooth nonlinearities at both extremes of the range. This helps the machine learning models 
process data that is outside of the ranges observed during training   [4].The normalized data, vn, 

is calculated as , where  and  is the unscaled data. There is one vt 
for each continuous feature, and new vt values are calculated during retraining cycle. The 
softmax scaled data is then provided as input for the Bloom filters.
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3.1.4 Generating Retraining Datasets
Our framework generates datasets for periodic retraining. Retraining data consists of a mix of old 
data from previous training or retraining datasets, and of newer data processed since the last 
retraining cycle. In our current implementation retraining occurs after 200,000 new feature 
vectors have been processed. Of these new feature vectors, approximately 6% are considered for 
inclusion in the retraining dataset. Of these 6%, with 80% probability we add the vector to the 
retraining dataset. The remaining 20% of the time we uniformly at random choose a feature 
vector from the previous training or retraining dataset for inclusion.  Additionally, we target our 
retraining datasets to consist of an even balance of 5000 attack vectors and 5000 normal vectors. 
To achieve this balance, we check for deviations from it immediately before retraining. If more 
than 60% of the retraining dataset has the same class label then we remove some vectors and 
replace them with vectors from the previous training or retraining dataset to achieve a balance. 
Since labeled datasets are required for training, we label the new data with the classification 
provided by our models.

3.1.5 Feature Subsetting
The feature vectors are split into two subsets by uniformly at random assigning each feature to 
one or both subsets. The one-hot encoded representations of the service and flag features are 
included in both subsets. The benefit to splitting the feature vectors into two feature sets is to 
attempt to provide independence between the models trained on the different feature sets. When 
the models trained on the different feature sets are later combined into an ensemble, if the 
classification errors of the subsets of models are uncorrelated, due to their independent feature 
sets, then the final ensemble can have better performance than any of the individual classifiers 
[6].

3.1.6 Boosted Classifiers
We train an ensemble of classifiers on each of the feature subsets. Each ensemble contains one 
each of the Naïve Bayes, logistic regression, support vector machine (SVM), and random forest 
classifiers [7,8]. We name these “level 1 classifiers”. We use the Orange Data Mining Toolbox 
for our implementations of the models [9]. Each of these classifiers has a number of configurable 
hyper-parameters. For instance, in Naïve Bayes we modify the probability estimator used for 
estimating prior class probabilities amongst m-estimates, Laplace estimation, and relative 
frequency estimation, and can also choose whether to tune the classification threshold for 
choosing between classes.  In SVM we can select amongst different SVM types, kernel types, 
various parameters for the different SVM types and kernels, and termination criteria. In logistic 
regression we modify the solver type and regularization parameter, and with random forests we 
vary the number of trees in the forest and the number of features to consider when determining 
where to split the nodes during tree induction [9]. 

We perform a random search to optimize selection of these hyper-parameters [10].  In each 
iteration of the search we randomly assign values to the hyper-parameters for the classifier under 
consideration, and then create a boosted learner consisting of 30 learners with these hyper-
parameters [13]. The resulting boosted learner is then trained on half of the training data and 
tested on the other half. The division of the training data is random and differs for each of the 
machine learning techniques. The learners are evaluated using Matthew’s correlation coefficient 
(MCC) [11]. In terms of true positives (TP), true negatives (TN), false positives (FN), and false 
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negatives (FN), the MCC is defined as  and has range [-
1,1] with a score of 1 indicating perfect performance, 0 indicating no better than chance, and -1 
indicating complete inaccuracy in prediction. The random search is terminated if an iteration’s 
score differs from the previous maximum by less than 0.001 and the maximum score exceeds 
0.7, or when a maximum of 15 iterations are reached. Experimentally, we find there to be little 
gain from introducing additional iterations to the search.

We always seek to optimize the performance of the ensemble, rather than that of the individual 
classifiers [12]. As such, the optimization begins with an empty ensemble and searches for an 
optimal hyper-parameter selection for the Naïve Bayes classifier. Then, the logistic regression, 
SVM, and random forest classifiers are added, in turn, to the ensemble. Combining 
heterogeneous classifiers into an ensemble in this way has been shown to increase prediction 
accuracy [14].

3.1.7 Boosted Meta-Classifiers
The classification probabilities from our two level-1 classifiers are input to an ensemble of meta-
classifiers. During training we randomly choose to include between 8 and 15 classifiers in our 
ensemble  of meta-classifiers. Each of the meta-classifiers is randomly chosen to be a Naïve 
Bayes, logistic regression, SVM, or random forest. Each of the meta-classifiers takes as input the 
classification probabilities from a random selection of two to six of the level-1 classifiers. As 
with the level-1 classifiers, we perform a random search for hyper-parameter optimization, form 
a boosted learner containing 30 learners with these hyper-parameters, and use MCC to score the 
models. 

3.1.8 Boosted Discriminator
The classification probabilities from the two blended level-1 ensembles and from each of the 
meta-classifiers are input to a random forest for final classification. As always, we perform a 
random search for hyper-parameter optimization and form a boosted collection of 30 learners 
with these hyper-parameters. During testing, the output from this discriminator is used as the 
classification for each feature vector. These classifications are then used to label the (unscaled) 
testing data so that it can be incorporated into the retraining dataset and, as necessary, added to 
the attacks Bloom filter.

3.2 Dynamic Aspects
There are many dynamic aspects of our framework. For example, one can randomize the 
selection of subsets of features for the level-1 ensembles. The number of level-1 ensembles can 
also be varied. We can adjust the number and type of classifiers in the level-1 ensembles and also 
the number and types of meta-classifiers. The selection of retraining data is randomized, and the 
balance of new and older data in the retraining datasets can be varied.  We can also vary the 
frequency of retraining.  We can also train several distinct copies of the framework and randomly 
choose which of the copies to use to classify incoming data. All of this randomization should 
frustrate adversaries that attempt to inject malicious data to train the models to classify 
adversarial data as being normal.
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3.3 Results
We have tested our framework with the Kyoto 2006+ dataset. Our initial training was a balanced 
training set of 6132 samples (3066 attack vectors and 3066 normal vectors) selected by randomly 
1000 attack samples and 1000 normal samples each from the 01 January 2007 to 07 January 
2007 data. We then removed duplicate entries from this dataset, and then balanced the result so 
that there would be equal numbers of attack and normal vectors. Retraining datasets were 
generated using the procedure described in Section 3.2.4, making these 6132 samples the only 
ground-truth labeled data used in our experiment. We used the 08 January 2007 to 31 August 
2009 data as our test set. In total, the test set consisted of 89,087,080 samples. Our results are 
presented in Table 1 where they are also compared to previous work [15,16]. In Table 1 the AUC 
score is the area under the receiver operating characteristic curve. The AUC indicates the 
probability that a classifier will rank a random positive instance higher than a random negative 
instance, so it represents a tradeoff between precision and recall.

Table 1: Results from testing our model on data from 08 January 2007 to 31 August 2009 
(ensemble A), from testing it on the subset of data as in [15] and [16] (ensemble B), from a 
signature based IDS included int he dataset (Signature IDS), and from prior work (Anomaly 

Detection, Maximum Entropy, Linear SVM).
Classifier MCC Recall False Positive 

Rate
AUC Score 

Ensemble A 0.9355 0.9889 0.0495 0.9697
Ensemble B 0.9456 0.9932 0.0347 0.9829
Signature IDS N/A 0.0900 0.0162 N/A
Anomaly 
Detection [15]

N/A 0.8093 0.0590 N/A

Maximum 
Entropy [16]

N/A 0.7729 0.0206 0.7204

Linear SVM [16] N/A 0.9895 0.0353 0.9630
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APPENDIX A:  TVA QUESTIONS

Throughout the life of the project, we regularly communicated with Tennessee Valley Authority 
(TVA) for guidance and to consult on questions that would drive our R&D. A compilation of the 
questions and answers are listed below:

TVA Staff: John W Stewart, 423-751-4582, jwstewart@tva.gov

1. What does a typical attack or concern look like (spear-phishing, malware installed after 
insertion of a rogue USB drive, etc.) 
Same as what you would see/expect on a typical IT system

2. What types of computing resources and constraints will we have?
Varies from relays to high power systems. 

3. What kinds of interactions occur between the control system and the larger enterprise 
network?
Separate networks but some links exist for remote configuration

4. What data (SCADA) is currently collected?
SNMP is collected, voltage readings, syncrophaser, ...

5. What types of data can we collect  (from PLCs, supervisory systems, etc)?
Can possibly get traffic captures of real network traffice

6. What kind of tools and processes monitor/debug/manage your existing networks?
A variety of graphical tools to monitor syslog and snmp messages.

7. What is the basic network topology (abstract)?
        - Physical and logical composition and/or separations
Control system separated from corporate network

8. Supporting network infrastructure?
        - Longhaul connectivity
        - Layer 3 devices (local or distributed)
        - Layer 2 devices (local)
        - Physical layer devices
                - Legacy devices (modems, line drivers, CSU/DSU)
                - Interface standards

9. Typical End devices/Concentrators?
        - Near-/Real-time requirements

mailto://jwstewart@tva.gov
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10. Servers/Services?
        - Specific Platforms
        - Specific Services/Applications
        - Multi-homing
        - Distributed Systems/Services

11. Common attacks/perceived attack vectors?
stuxnet and other attacks that you would see in traditional IT systems

12. How many end devices (PLC, RTU, ...)?
On the order of thousands

13. Are most addresses statically configured or DHCP?
Statically configured

14. Is there a concentrator for network events/logs?
Yes, several

15. What is the maximum acceptable delay of a communication stream?
It varies depending on the criticality of the process or if needed to meet CIP requirements

16. What is done now to update/patch field devices?
Planned in advance and thoroughly tested within laboratory beforehand to evaluate any potential 
negative side effects

17. How much downtime can be afforded?
It varies based on the criticality of the process or if needed to meet CIP requirements
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